Projected upsurge of severe El Niño events will lead to coastal flooding, erosion

News
el nino 2015_ocean-temperatures NOAA_118926

The projected upsurge of severe El Niño and La Niña events will cause an increase in storm events leading to extreme coastal flooding and erosion in populated regions across the Pacific Ocean, according to a multi-agency study published Monday in Nature Geoscience.

The impact of these storms is not presently included in most studies on future coastal vulnerability, which look primarily at sea level rise. New research data, from 48 beaches across three continents — including Hawaii — and five countries bordering the Pacific Ocean, suggest the predicted increase will exacerbate coastal erosion irrespective of sea level rise affecting the region.

Researchers from 13 different institutions analyzed coastal data from across the Pacific Ocean basin from 1979 to 2012. The scientists sought to determine if patterns in coastal change could be connected to major climate cycles.

Although previous studies have analyzed coastal impacts at local and regional levels, this is the first to pull together data from across the Pacific to determine basin-wide patterns. The research group determined all Pacific Ocean regions investigated were affected during either an El Niño or La Niña year.

When the west coast of the U.S. mainland and Canada, Hawaii, and northern Japan felt the coastal impacts of El Niño, characterized by bigger waves, different wave direction, higher water levels and/or erosion, the opposite region in the Southern Hemisphere of New Zealand and Australia experienced “suppression,” such as smaller waves and less erosion.

The pattern then generally flips: during La Niña, the Southern Hemisphere experienced more severe conditions.

The published paper, “Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation” is available online.

Copyright 2019 Nexstar Broadcasting, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.